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SOME APPLICATIONS OF THE QUASI VORTEX~LATTICE METHOD
IN STEADY AND UNSTEADY AERODYNAMICS

C. Edward Lan
The University of Kansas

SUMMARY

The quasi vortex-lattice method is reviewed and applied to the evalua-
tion of backwash, with applications in ground effect analysis. It is also
extended to unsteady aerodynamics, with particular interest in the calcula-
tion of unsteady leading-edge suction. Some applications in ornithopter
aerodynamics are given.

INTRODUCTION

The quasi vortex-lattice method (Quasi VLM) has been shown to produce
good accuracy in lifting-surface problems not only for non-flapped but also
flapped configurations (ref. 1). In these applications, the only induced
velocity to be evaluated is the downwash. However, in some other applica-
tions such as ground effect analysis and wing-jet interaction (ref. 2), it
is necessary to compute the u-induced velocity (i.e. backwash) in the
flow field away from the wing plane. It is the purpose of this paper to
assess the accuracy of such backwash computatioa.

One important feature of the Quasi VLM is the accurate prediction of
the leading-edge suction without resorting to kutta-Joukowsky relation. It
is this feature that makes it possible to extend the method to the predic-
tion of unsteady leading-edge suction in unsteady aerodynamics. This exten~-
sion 1is also presented below.
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SYMBOLS

aspect ratio
chord length, m(ft), taken as unity.
leading-edge singularity parameter, defined in eq. (3c)

induced drag coefficient

sectional lift coefficient

amplitude of sectional 1lift coefficient in unsteady flow
total lift coefficient

lift curve slope, per radian

pitching moment coefficient

pitching moment curve slope, per radian

pressure coefficient difference
time-averaged leading-edge thrust coefficient

nondimensional height measured from the wing plane, referred to
the chord length. See fig. 5.

flapping amplitude

flapping amplitude at the wing tip

reduced frequency, defined as wc/2V
number of integration points, or Mach number

number of chordwise vortices
number of spanwise vortex strips

leading-edge suction, N(1b), or wing area, m2(ft?)
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Subscript:

£

amplitude Pf unsteady leading-edge suction
nondimensi;nal backwash, positive downstream
amplitude of unsteady backwash on the wing plane
freestream velocity, m/sec (ft/sec)

nondimensional downwash, positive downward

rectangular coordinates, with x positive downstream, y positive
spanwise to the right and z positive upward

camber slope

angle of attack, deg.

amplitude of pitching oscillation
- V12

propulsive efficiency, percent
nondimensional spanwise coordinate

nondimensional vortex density

oscillation frequency, rad/sec

density, kg/m3 (slugs/ft3)

freestream dynamic pressure, N/m2 (lb/ftz)
-1

amplitude of flap angle

sectional lift coefficient in free air

flap

387




[

BASIC ANALYSIS IN QUASI VLM

TN

For simplicity in presentation, consider the two-dimensional (2-D) downwash
equation:

1
w(x) = %Ff y(x')dx"' (L
0 x-x"'

The integral is first transformed to a 6-integration and then reduced to a
finite sum thrcugh the midpoint trapezoidal rule. It is obtained that

n T
-1 y(8') sind' d6' -1 ' '
wix,) = -‘f - — = o= y'sin8' - ysin® _ ,
i 27 0 cos@ - cos6 27 0 " cosé — cosd’ de
. -1 N Yksinek - yisinei
2t N k=1 cosei - cosek
1 yksinek NC , i=0
=N —_— + (2)
k=1 X1 % 0 , i#0
where
X, =X (1-cos8,) , 6, = 1=0,1,...,8 (3a)
i 2 i ] i N ’ phlygeceoy
=1 = k-1)T -
X =3 (1 - cosek) . ek N , k=1,...,N (3b)
2C = 1im Y(8)sin © (3¢)

60

Note that eq. (2) differs from the conventional VLM in that sin® in the for-
mulation will eliminate the square-root singularities at the edges and the
vortex densities are directly predicted, instead of the strengths of discrete
vortices, Furthermore, the control and vortex points are defined by the so-
called "semi-circle method." This is illustrated in fig, 1, By sclving

eq. (2) with i#0, N yk-values can be obtained. Then the leading-edge singu-

larity parameter C can be computed by taking i=0, i.e., by taking control
point at the leading edge. The leading-edge suction is then

2
S = mpg- (4)
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In three-dimensional cases, the above concept is also applicable by treat-
ing each chordwise vortex integral in a similar manner as in eq. (2). In this
case, not only chordwise control and vortex locations are defined by the semi-
circle method, but also the spanwise vortex strips and control locations. See
fig. 1. The detail is referred to in ref. 1. The rate of convergence of this
method is indicated in figs. (2) and (3) for a 45°-sweep wing of AR=2 and
constant chord. It is seen that the method converges reasonably fast.

BACKWASH EVALUATION AND GROUND EFFECT ANALYSIS

In ground effect analysis, it is known that the image vortex system may
produce strong backwash to decrease the air velocity on the wing great enough
to be significant. In fact, as a result the wing 1lift in ground effect may
be less than the free air value. This unfavorable effect of backwash is par-
ticularly important in powered-lift aerodynamics and for wings under high lift
conditions (ref. 3). Therefore, any formulation of ground-effect problem
without backwash computation is applicable only to small loading conditions
as analyzed in ref. 4.

To see the accuracy of backwash computation by VLM and Quasi VLM, con-
sider the 2-~D expressions for the backwash and downwash:

u(x,z) = —-[ y(xdx' (5)
0 (x-x')%4z2

1 \J L t
w(x,z) = _;__ f (x=x")y(x')dx (6)
"0 (x-x")2+ 22

If y(x')= V(1-x')/x' , the integration can be performed exactly. The results
are shown in Appendix A. The downwash expression is included here for later
comparison. In all computations shown below, equal-spacing elements are used
for the VLM. For the Quasi VLM, again the 6-transformation is applied first
before using the midpoint trapezoidal rule. Fig. 4 shows that the backwash
along the chord evaluated by the VLM at both control and vortex points tend
to be too high, in particular near the leading edge. On the other hand, the
Quasi VIM gives quite accurate results everywhere at these not too small z-
values. With these results in mind, both methods are now applied to the fol-
lowing 2-D linear ground-effect equations:

i (x-x')-2h,a dz
21rf xgx de zﬂfY(x') 1 dx,_q_&_& (7
0 (x--x')2+4h12
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1
c, =2 j. y(x) (1+u(x))dx (8)
0

The corresponding geometry is given in fig. 5. The second integral in eq. (7)
represents the normalwash due to the image vortex system. The ''2ha" term is
the backwash contribution. The results of computation are shown in fig. 6.
Two points are of particular interest. Firstly, the linear vortex theory will
give better results if the mean surface (as used in the mean surface approxi-
mation of the linear airfoil theory) is taken through the 3/4 chord point.
Secondly, both the Quasi VLM and VLM predict approximately the same 1lift, de-
spite the fact that the VLM gives higher backwash. This is because the VLM
also produces higher downwash at a given z-value. This is shown in fig. 7.
This means that the higher upwash from the image vortex system as predicted
by the VLM tends to compensate the effect due to the higher predicted back-
wash., With flap deflected, the VLM predicts lower 1lift than the Quasi VLM
does as shown in fig. 8.

The analysis with eqs. (7)-(8) becomes increasingly inaccurate at h<0.2.
As an extreme example, let z=0.05 in eq. (5). With y= J(1-x)/x , the results
are shown in figs. 9 and 10. It is seen that the backwash is underpredicted
at the control points and overpredicted at the vortex points by both the VLM
and the Quasi VLM. Depending on a, this would result in small or even nega-
tive cy in eq. (8). The backwash computation with small z has important ap-

plications in wing-~jet interaction theory (ref. 2). Therefore, it is desirable
to find a practical way to improve the accuracy of the computation. Even
though increasing the number of vortex points (i.e. the number of integration
points) can increase the accuracy,it is not a practical way because the number
of unknowns to be solved would greatly increase, in particular, in 3-D appli-
cations. Since the inaccuracy is mainly due to the second-order singularity

in eq. (5) as z-»0, a practical method is described in ref. 6 to deal with this
by weakening the singularity., According to this method, eq. (5) is evaluated
as follows:

1 . 1 '
u(x,z) = i;_f Y(x")-y(x) dx' + ZIZSX) f dx 9)
"0 (xex") 22 T 0 (x-x')%+22
N M
-y(x), .
22 Rl Al sine, + 24D L T ity o
T

1 (X‘xk)2+ z?2 M i=1 (x-xj)2+22

where x may be the control points (eq. 3a) or the vortex locations (eq. 3b) and

xj a% (1-.(:036.1) . ej = -(—%31-—1—)-1 . jsl,...,}‘l (11)
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with M chosen to be 2PN for interdigitation between control and vortex points,

p being any integer. Note that the last integral in eq. (9) can be integrated

exactly in 2-D case. However, the similar integral in 3-D would bs too compli-
cated to integrate. The accuracy of eq. (10) is also demonstrated with p=3 in

figs. 9-10, 1Its application in a wing-jet interaction theory is discussed

in ref. 7.

PREDICTION OF UNSTEADY LEADING-EDGE SUCTION

As mentioned earlier, the Quasi VLM predicts the leading-edge suction
through the computation of the leading-edge singularity parameter. This fea-
ture can be easily extended to the unsteady aerodynamics if the downwash ex-
pression similar to that due to a steady horseshoe vortex can be derived for
unsteady flow. This has been done recently by integrating the doublet poten-
tial by parts. The results are given in Appendix B for planar configurations.
Note that if the oscillating frequency is zero, the expression is reduced to
that for a steady horseshoe vortex. Using this expression, it is possible to
extend the steady Quasi VLM to the unsteady case. In 2-D flow, this has been
done in ref. 8. Some comparison with exact solutions of unsteady leading-edge
suction (ref. 9) is made in Table I. It is seen that the accuracy of the Quasi
VLM is quite good. Other aerodynamic characteristics at low or high subsonic
Mach numbers can also be predicted accurately, including gust response (ref. 8).

In the 3-D method, note that the downwash expression given in Appendix B
involves two types of integrals. The integration associated with I-integral,
eqs. (B.15) and (B.18), can be performed by approximating the integrand, as
has been done in ref. 10. On the other hand, the integrals, F2 and F4, can

most convetiiently be integrated by approximating the integrands by quadratic
functions of the integration variable as has been done in ref. 10. The re-
maining aspects of the method follow closely the steady version.

To show the 3-D applications, the characteristics of a rectangular wing
of aspect ratio 2 undergoing the first bending mode of oscillation (ref. 11)
are computed. To indicate the rate of convergence of the method, the pre-
dicted complex 1ift coefficient is plotted in fig. 11 against the number of
spanwise strips, It is seen that the method converges relatively fast for
this planform. For instance, with Nc=4, CL is changed by only 1% as Ns is

increased from 10 to 20. Furthermore, the effect of Nc is seen to be small

for this wing without chordwise deformation. The predicted pressure distribu-
tions at one spanwise station are compared with experimental data and those
predictod by the Doublet-Lattice Method (DLM) (ref. 10) in fig. 12 with good
agreement. The 3-D exact solution of unsteady leading-edge suction 1is not
available. However, Bennett (ref. 12) has applied Reissner's high aspect-
ratio theory to the computation of propulsive efficiency of ornithopters.
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Here, the propulsive efficiency is defined as

_ quCTV (12)
ns=——T—
q SCLh
s 1
N | =\ (13)
ch = guf BT, man
-1
All quantities in eq. (12) have been averaged over one cycle. Tae : ' .wits for
two rectangular wings of aspect ratios of 6 and 12 performing line.- apping
(E(E) ='Etn) are shown in fig. 13. It appears that the high aspect - .'o

theory tends to predict higher thrust than the present method. The agreement
of the predicted efficicency by both methods is good for AR=12, But for AR=6,
the high aspect-ratio theory predicts lower efficiency, presumably because it
would predict much higher input power which depends on the wing loading.

CONCLUDING REMARKS

The quasi vortex-lattice method was shown to possess good convergence
characteristics in steady wing theory. 1Its application to the computation
of downwash and backwash away from the wing plane in 2-D flow showed better
accuracy than the conventional VLM with z not too small. When z is small,
both methods become inaccurate in backwash computation. An improved methol
for the Quasi VLM was presented. The Quasi VLM was also extended to the un~
steady aerodynamics, with the calculation of unsteady leading-edge suction
being of particular interest.
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APPENDIX A
Exact Integration for Eqs. (5) and (6)
(1) Eq. (5)
1 2
z [1-x" _dx' _ az b(l-x)-a m 2
u(x,z) = ETT f x' 2,.2 B .é.l—; 4,122 {i 51gn[b(l_X)_a !
0 (x~x")“+2 a'+b<z

+ % sign[bx+32]} (A.1)
where

b = %(1—2x) a”

al = \/[zz+x(l~x)]2+(1-—2x)zz2 - [224x(1-x) ]

) (A.3)
(2) Eq. (6)
1
1-x'
1 (x-x") [ ~— -p! 2_
w(x,z) 77 2 X' ax! = (D-D )cosel+D cosggl
— ! 2 -
0 (x=x) “42 D2+D 2-2c052‘31

where

UEX { [242'4+(2' 241622) 7] + [Z'+(Z'2+16zz)%]%} -

6, = cos™! {[ 2 %]%cos{} (A.5)

242" + (2'%+41622)

Z' = 4z2-3in?0 (A.0)
cosf = 1-2x (A.7)
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APPENDIX B

Downwash due to an Oscillating Horseshoe Vortex

The dowmwash produced by an "oscillating horseshoe vortex" for a
planar configuration can be written as

a9 2 (8.1)
3z 3z 3z
where
29,
7 ThtH (8-2)
%9,
3z T3t F (8.3
Y (0 SN 1
1 8 ) vi-y 322 2
V(x-x")2482(y-y")
' (x'-x)(xz—x1)+82(y2-y1)(Y"Y)
+
\[y'-y q 1
x'=x2
x exp { 0 MVGex) 2482 (yy ') 2 ‘"2"‘"")} Y'Yy (B.4)
: v 2
B
x'=x1
y'=y,
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1 {
I ffz 1, 1 [(“2""1) (n-y)+Q ‘
2 1v 8n n-y (yz-yl)R n-y ,
0
- . - 20y ov 12(ne »
+((x2 x)) (n-y)4Q) (x,-x,) + 8(y, ¥ (n y)] Lfi
Q
5 i
_ x 2 X,-X MR-M“x =
x lH(R! n) + (H_ Eo_ - ..H_..) 2_ 1] exp [—i% -—'———-—0] (yz-yl)dt (B.5) ‘
82 82 yZ yl 82 “
R = JarZ4BeC (B.6) ;
g A= (xy7x))? + B2(y,~y,)? (8.7)
% B = -2[(x-x;) (x)=x,) + 82(y-y)) (y,~y,)] \B.8)
¥ 3
: €= (x-x)% + B2(y-y))? (.9)
! n=y = (y,~y)1=(y-y;) (B.10)
% Q= Geymx) (y-y9) - (x=x)) (y,-y,) (B.11) ’ :
b i
i
: Xy = X-X; - T(xz-xl) (B.12) \
w 4% 1 1 : ;
! F3=-Y& V- = I + ¥,y 11} (B.13)
s 1 -f:k
aC :
\ S N ] -} P
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-x0+Mm

B?

r,2 = (y-m?
(11r1)1= Tlrl at t=0

(Tlrl)2 =TT, at T=1

11 r12 at t=0

~
N
[}

12 r12 at t=1

%01 = %o at t=0

x02 = xo at t=1

an M(y n{l )e-l—(r r1+x0)+1 I(r) 0
147, 2 Yoy
1
T X XA—X
+ (1 - 1 Ye ~-ig (T1r1+x0 2 17271
1+112 BZR 82 yz_yl
Wy
- (y-1) TR 4o
'2+r 2)3/2
T

In the above expressions, (xl, yl) and (x
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Table I. -- Comparison of Predicted Leading-Edge Suction
Parameter with Exact Solutions in 2-D Incom-
pressible Flow.

s = 1lim u(x)V 1+x
x>=1
;E = 3s/3a , 5= = 3s/38

8

(A) Pitching motion about midchord

k N Present Method " Exact, Ref. 9

0.1 10 1.18870-0.255551 1.18870-0.255561
0.5 15 0.89889-0.355271 0.89889-0.355291
1.0 15 0.83374-0.467371 0.83378-0.467481

(B) Flap Rotation with flap-chord ratio = 0.3

S

k (Nl’ NZ) Present Method § Exact, Ref. 9

0.1 (12, 7;_ 0.37115-0.146961 0.37139-0.147051
0.5 (12, 7) 0.17483-0,115651 0.17496-0,115761
1.0 (12, 7) 0.12972-0.065801 0.12982-0.065921

Note: N1 = number of doublet elements on the airfoil.

N2 = number of doublet elements on the flap.
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! . Figure 1.- Illustration of chordwise and spanwise control
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Figure 2.~ Effect of vortex-lattice arrangement on aerodynamic
characteristics of a 459-sweep wing of AR = 2. (Sf = 0°;
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Figure 3.- Effect of vortex-lattice arrangement on aerodynamic char-
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Figure 4.~ Comparison of backwash evaluations (eq. 5) by different

methods. Y(x) = “(l - x)/x: N = 8.
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Figure 9.- Comparison of backwash evaluations at controsl points by different

methods. vy(x) = V(l - x)/x; z/c = 0.05; N = 6.
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Figure 10.- Comparison of backwash evaluations at vortex points by different

methods. Y(x) = W(l - x)/x; z/c = 0.05; N = 6.
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Figure 11.- Convergence of computed 1ift coefficient for a rectangular wing

of AR = 2 oscillating in first bending mode.

M = 0.24; k = 0.47.

EXPERIMENT (REF.11)
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Figure 12.- Comparison of

M= 0.24; k = 0.47.
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computed pressure distributions with experimental
data for a rectangular wing of AR = 2 oscillating in first bending mode.
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Figure 13.- Theoretical propulsive efficiency and thrust for rectangular
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